Discrete Calculus of Variations for Quadratic Lagrangians. Convergence Issues
نویسندگان
چکیده
Abstract. We study in this paper the continuous and discrete Euler-Lagrange equations arising from a quadratic lagrangian. Those equations may be thought as numerical schemes and may be solved through a matrix based framework. When the lagrangian is time-independent, we can solve both continuous and discrete Euler-Lagrange equations under convenient oscillatory and nonresonance properties. The convergence of the solutions is also investigated. In the simplest case of the harmonic oscillator, unconditional convergence does not hold, we give results and experiments in this direction.
منابع مشابه
Discrete calculus of variations for quadratic lagrangians
We develop in this paper a new framework for discrete calculus of variations when the actions have densities involving an arbitrary discretization operator. We deduce the discrete Euler-Lagrange equations for piecewise continuous critical points of sampled actions. Then we characterize the discretization operators such that, for all quadratic lagrangian, the discrete Euler-Lagrange equations co...
متن کاملOn the G-Convergence of Discrete Dynamics and Variational Integrators
For a simple class of Lagrangians and variational integrators, derived by time discretization of the action functional, we establish (i) the -convergence of the discrete action sum to the action functional; (ii) the relation between -convergence and weak∗ convergence of the discrete trajectories in W 1,∞(R;Rn); and (iii) the relation between -convergence and the convergence of the Fourier trans...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملInvariant Theory , Equivalence Problems , and the Calculus of Variations
This paper surveys some recent connections between classical invariant theory and the calculus of variations, stemming from the mathematical theory of elasticity. Particular problems to be treated include the equivalence problem for binary forms, covari-ants of biforms, canonical forms for quadratic variational problems, and the equivalence problem for particle Lagrangians. It is shown how thes...
متن کاملAsymptotic Behavior of Weighted Quadratic and Cubic Variations of Fractional Brownian Motion
The present article is devoted to a fine study of the convergence of renormalized weighted quadratic and cubic variations of a fractional Brownian motion B with Hurst index H . In the quadratic (resp. cubic) case, when H < 1/4 (resp. H < 1/6), we show by means of Malliavin calculus that the convergence holds in L toward an explicit limit which only depends on B. This result is somewhat surprisi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1106.5350 شماره
صفحات -
تاریخ انتشار 2011